Рассчитать высоту треугольника со сторонами 81, 68 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 68 + 45}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-81)(97-68)(97-45)}}{68}\normalsize = 44.9953477}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-81)(97-68)(97-45)}}{81}\normalsize = 37.7738721}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-81)(97-68)(97-45)}}{45}\normalsize = 67.9929699}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 68 и 45 равна 44.9953477
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 68 и 45 равна 37.7738721
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 68 и 45 равна 67.9929699
Ссылка на результат
?n1=81&n2=68&n3=45
Найти высоту треугольника со сторонами 125, 94 и 42
Найти высоту треугольника со сторонами 121, 121 и 18
Найти высоту треугольника со сторонами 145, 89 и 58
Найти высоту треугольника со сторонами 141, 129 и 108
Найти высоту треугольника со сторонами 90, 79 и 44
Найти высоту треугольника со сторонами 77, 63 и 45
Найти высоту треугольника со сторонами 121, 121 и 18
Найти высоту треугольника со сторонами 145, 89 и 58
Найти высоту треугольника со сторонами 141, 129 и 108
Найти высоту треугольника со сторонами 90, 79 и 44
Найти высоту треугольника со сторонами 77, 63 и 45