Рассчитать высоту треугольника со сторонами 81, 69 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 69 + 22}{2}} \normalsize = 86}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86(86-81)(86-69)(86-22)}}{69}\normalsize = 19.8257479}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86(86-81)(86-69)(86-22)}}{81}\normalsize = 16.8886001}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86(86-81)(86-69)(86-22)}}{22}\normalsize = 62.1807549}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 69 и 22 равна 19.8257479
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 69 и 22 равна 16.8886001
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 69 и 22 равна 62.1807549
Ссылка на результат
?n1=81&n2=69&n3=22
Найти высоту треугольника со сторонами 31, 30 и 3
Найти высоту треугольника со сторонами 123, 96 и 57
Найти высоту треугольника со сторонами 129, 77 и 71
Найти высоту треугольника со сторонами 114, 97 и 64
Найти высоту треугольника со сторонами 112, 65 и 63
Найти высоту треугольника со сторонами 138, 132 и 89
Найти высоту треугольника со сторонами 123, 96 и 57
Найти высоту треугольника со сторонами 129, 77 и 71
Найти высоту треугольника со сторонами 114, 97 и 64
Найти высоту треугольника со сторонами 112, 65 и 63
Найти высоту треугольника со сторонами 138, 132 и 89