Рассчитать высоту треугольника со сторонами 81, 75 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 75 + 12}{2}} \normalsize = 84}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84(84-81)(84-75)(84-12)}}{75}\normalsize = 10.7759733}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84(84-81)(84-75)(84-12)}}{81}\normalsize = 9.97775303}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84(84-81)(84-75)(84-12)}}{12}\normalsize = 67.349833}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 75 и 12 равна 10.7759733
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 75 и 12 равна 9.97775303
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 75 и 12 равна 67.349833
Ссылка на результат
?n1=81&n2=75&n3=12
Найти высоту треугольника со сторонами 85, 80 и 66
Найти высоту треугольника со сторонами 94, 81 и 25
Найти высоту треугольника со сторонами 133, 114 и 50
Найти высоту треугольника со сторонами 137, 129 и 97
Найти высоту треугольника со сторонами 91, 84 и 40
Найти высоту треугольника со сторонами 136, 128 и 39
Найти высоту треугольника со сторонами 94, 81 и 25
Найти высоту треугольника со сторонами 133, 114 и 50
Найти высоту треугольника со сторонами 137, 129 и 97
Найти высоту треугольника со сторонами 91, 84 и 40
Найти высоту треугольника со сторонами 136, 128 и 39