Рассчитать высоту треугольника со сторонами 81, 75 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 75 + 30}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-81)(93-75)(93-30)}}{75}\normalsize = 29.99904}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-81)(93-75)(93-30)}}{81}\normalsize = 27.7768889}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-81)(93-75)(93-30)}}{30}\normalsize = 74.9976}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 75 и 30 равна 29.99904
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 75 и 30 равна 27.7768889
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 75 и 30 равна 74.9976
Ссылка на результат
?n1=81&n2=75&n3=30
Найти высоту треугольника со сторонами 116, 85 и 32
Найти высоту треугольника со сторонами 88, 83 и 71
Найти высоту треугольника со сторонами 105, 90 и 48
Найти высоту треугольника со сторонами 147, 114 и 67
Найти высоту треугольника со сторонами 83, 77 и 64
Найти высоту треугольника со сторонами 77, 64 и 31
Найти высоту треугольника со сторонами 88, 83 и 71
Найти высоту треугольника со сторонами 105, 90 и 48
Найти высоту треугольника со сторонами 147, 114 и 67
Найти высоту треугольника со сторонами 83, 77 и 64
Найти высоту треугольника со сторонами 77, 64 и 31