Рассчитать высоту треугольника со сторонами 81, 76 и 60

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 76 + 60}{2}} \normalsize = 108.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108.5(108.5-81)(108.5-76)(108.5-60)}}{76}\normalsize = 57.0703018}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108.5(108.5-81)(108.5-76)(108.5-60)}}{81}\normalsize = 53.5474437}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108.5(108.5-81)(108.5-76)(108.5-60)}}{60}\normalsize = 72.2890489}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 76 и 60 равна 57.0703018
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 76 и 60 равна 53.5474437
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 76 и 60 равна 72.2890489
Ссылка на результат
?n1=81&n2=76&n3=60