Рассчитать высоту треугольника со сторонами 81, 79 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 79 + 78}{2}} \normalsize = 119}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119(119-81)(119-79)(119-78)}}{79}\normalsize = 68.9429889}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119(119-81)(119-79)(119-78)}}{81}\normalsize = 67.2406929}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119(119-81)(119-79)(119-78)}}{78}\normalsize = 69.8268734}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 79 и 78 равна 68.9429889
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 79 и 78 равна 67.2406929
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 79 и 78 равна 69.8268734
Ссылка на результат
?n1=81&n2=79&n3=78
Найти высоту треугольника со сторонами 117, 116 и 15
Найти высоту треугольника со сторонами 140, 109 и 59
Найти высоту треугольника со сторонами 132, 106 и 100
Найти высоту треугольника со сторонами 72, 69 и 35
Найти высоту треугольника со сторонами 142, 124 и 29
Найти высоту треугольника со сторонами 98, 76 и 35
Найти высоту треугольника со сторонами 140, 109 и 59
Найти высоту треугольника со сторонами 132, 106 и 100
Найти высоту треугольника со сторонами 72, 69 и 35
Найти высоту треугольника со сторонами 142, 124 и 29
Найти высоту треугольника со сторонами 98, 76 и 35