Рассчитать высоту треугольника со сторонами 81, 80 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 80 + 54}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-81)(107.5-80)(107.5-54)}}{80}\normalsize = 51.1811943}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-81)(107.5-80)(107.5-54)}}{81}\normalsize = 50.5493277}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-81)(107.5-80)(107.5-54)}}{54}\normalsize = 75.8239915}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 80 и 54 равна 51.1811943
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 80 и 54 равна 50.5493277
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 80 и 54 равна 75.8239915
Ссылка на результат
?n1=81&n2=80&n3=54
Найти высоту треугольника со сторонами 147, 128 и 90
Найти высоту треугольника со сторонами 37, 27 и 22
Найти высоту треугольника со сторонами 124, 69 и 68
Найти высоту треугольника со сторонами 78, 62 и 39
Найти высоту треугольника со сторонами 149, 134 и 120
Найти высоту треугольника со сторонами 143, 139 и 90
Найти высоту треугольника со сторонами 37, 27 и 22
Найти высоту треугольника со сторонами 124, 69 и 68
Найти высоту треугольника со сторонами 78, 62 и 39
Найти высоту треугольника со сторонами 149, 134 и 120
Найти высоту треугольника со сторонами 143, 139 и 90