Рассчитать высоту треугольника со сторонами 82, 59 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 59 + 57}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-82)(99-59)(99-57)}}{59}\normalsize = 56.9999773}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-82)(99-59)(99-57)}}{82}\normalsize = 41.0121788}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-82)(99-59)(99-57)}}{57}\normalsize = 58.9999765}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 59 и 57 равна 56.9999773
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 59 и 57 равна 41.0121788
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 59 и 57 равна 58.9999765
Ссылка на результат
?n1=82&n2=59&n3=57
Найти высоту треугольника со сторонами 99, 84 и 82
Найти высоту треугольника со сторонами 104, 91 и 90
Найти высоту треугольника со сторонами 126, 115 и 84
Найти высоту треугольника со сторонами 89, 56 и 34
Найти высоту треугольника со сторонами 54, 54 и 52
Найти высоту треугольника со сторонами 141, 105 и 55
Найти высоту треугольника со сторонами 104, 91 и 90
Найти высоту треугольника со сторонами 126, 115 и 84
Найти высоту треугольника со сторонами 89, 56 и 34
Найти высоту треугольника со сторонами 54, 54 и 52
Найти высоту треугольника со сторонами 141, 105 и 55