Рассчитать высоту треугольника со сторонами 82, 61 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 61 + 42}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-82)(92.5-61)(92.5-42)}}{61}\normalsize = 40.7536623}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-82)(92.5-61)(92.5-42)}}{82}\normalsize = 30.3167488}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-82)(92.5-61)(92.5-42)}}{42}\normalsize = 59.1898429}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 61 и 42 равна 40.7536623
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 61 и 42 равна 30.3167488
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 61 и 42 равна 59.1898429
Ссылка на результат
?n1=82&n2=61&n3=42
Найти высоту треугольника со сторонами 86, 84 и 48
Найти высоту треугольника со сторонами 142, 138 и 50
Найти высоту треугольника со сторонами 81, 79 и 66
Найти высоту треугольника со сторонами 147, 117 и 45
Найти высоту треугольника со сторонами 48, 48 и 47
Найти высоту треугольника со сторонами 126, 98 и 35
Найти высоту треугольника со сторонами 142, 138 и 50
Найти высоту треугольника со сторонами 81, 79 и 66
Найти высоту треугольника со сторонами 147, 117 и 45
Найти высоту треугольника со сторонами 48, 48 и 47
Найти высоту треугольника со сторонами 126, 98 и 35