Рассчитать высоту треугольника со сторонами 82, 66 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 66 + 24}{2}} \normalsize = 86}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86(86-82)(86-66)(86-24)}}{66}\normalsize = 19.7913821}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86(86-82)(86-66)(86-24)}}{82}\normalsize = 15.929649}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86(86-82)(86-66)(86-24)}}{24}\normalsize = 54.4263008}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 66 и 24 равна 19.7913821
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 66 и 24 равна 15.929649
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 66 и 24 равна 54.4263008
Ссылка на результат
?n1=82&n2=66&n3=24
Найти высоту треугольника со сторонами 147, 131 и 129
Найти высоту треугольника со сторонами 146, 114 и 111
Найти высоту треугольника со сторонами 137, 129 и 60
Найти высоту треугольника со сторонами 49, 32 и 19
Найти высоту треугольника со сторонами 61, 46 и 43
Найти высоту треугольника со сторонами 150, 149 и 20
Найти высоту треугольника со сторонами 146, 114 и 111
Найти высоту треугольника со сторонами 137, 129 и 60
Найти высоту треугольника со сторонами 49, 32 и 19
Найти высоту треугольника со сторонами 61, 46 и 43
Найти высоту треугольника со сторонами 150, 149 и 20