Рассчитать высоту треугольника со сторонами 82, 68 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 68 + 30}{2}} \normalsize = 90}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{90(90-82)(90-68)(90-30)}}{68}\normalsize = 28.6730767}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{90(90-82)(90-68)(90-30)}}{82}\normalsize = 23.7776734}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{90(90-82)(90-68)(90-30)}}{30}\normalsize = 64.9923072}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 68 и 30 равна 28.6730767
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 68 и 30 равна 23.7776734
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 68 и 30 равна 64.9923072
Ссылка на результат
?n1=82&n2=68&n3=30
Найти высоту треугольника со сторонами 50, 42 и 37
Найти высоту треугольника со сторонами 138, 136 и 123
Найти высоту треугольника со сторонами 111, 97 и 59
Найти высоту треугольника со сторонами 89, 80 и 28
Найти высоту треугольника со сторонами 136, 87 и 85
Найти высоту треугольника со сторонами 123, 99 и 91
Найти высоту треугольника со сторонами 138, 136 и 123
Найти высоту треугольника со сторонами 111, 97 и 59
Найти высоту треугольника со сторонами 89, 80 и 28
Найти высоту треугольника со сторонами 136, 87 и 85
Найти высоту треугольника со сторонами 123, 99 и 91