Рассчитать высоту треугольника со сторонами 82, 71 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 71 + 23}{2}} \normalsize = 88}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88(88-82)(88-71)(88-23)}}{71}\normalsize = 21.5164068}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88(88-82)(88-71)(88-23)}}{82}\normalsize = 18.6300596}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88(88-82)(88-71)(88-23)}}{23}\normalsize = 66.4202124}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 71 и 23 равна 21.5164068
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 71 и 23 равна 18.6300596
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 71 и 23 равна 66.4202124
Ссылка на результат
?n1=82&n2=71&n3=23
Найти высоту треугольника со сторонами 43, 42 и 41
Найти высоту треугольника со сторонами 133, 128 и 108
Найти высоту треугольника со сторонами 147, 81 и 77
Найти высоту треугольника со сторонами 113, 102 и 89
Найти высоту треугольника со сторонами 143, 123 и 116
Найти высоту треугольника со сторонами 78, 74 и 35
Найти высоту треугольника со сторонами 133, 128 и 108
Найти высоту треугольника со сторонами 147, 81 и 77
Найти высоту треугольника со сторонами 113, 102 и 89
Найти высоту треугольника со сторонами 143, 123 и 116
Найти высоту треугольника со сторонами 78, 74 и 35