Рассчитать высоту треугольника со сторонами 82, 72 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 72 + 36}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-82)(95-72)(95-36)}}{72}\normalsize = 35.9601009}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-82)(95-72)(95-36)}}{82}\normalsize = 31.5747228}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-82)(95-72)(95-36)}}{36}\normalsize = 71.9202018}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 72 и 36 равна 35.9601009
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 72 и 36 равна 31.5747228
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 72 и 36 равна 71.9202018
Ссылка на результат
?n1=82&n2=72&n3=36
Найти высоту треугольника со сторонами 142, 103 и 63
Найти высоту треугольника со сторонами 86, 73 и 15
Найти высоту треугольника со сторонами 89, 69 и 45
Найти высоту треугольника со сторонами 150, 136 и 87
Найти высоту треугольника со сторонами 139, 84 и 69
Найти высоту треугольника со сторонами 118, 87 и 71
Найти высоту треугольника со сторонами 86, 73 и 15
Найти высоту треугольника со сторонами 89, 69 и 45
Найти высоту треугольника со сторонами 150, 136 и 87
Найти высоту треугольника со сторонами 139, 84 и 69
Найти высоту треугольника со сторонами 118, 87 и 71