Рассчитать высоту треугольника со сторонами 82, 73 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 73 + 13}{2}} \normalsize = 84}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84(84-82)(84-73)(84-13)}}{73}\normalsize = 9.92401229}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84(84-82)(84-73)(84-13)}}{82}\normalsize = 8.83479143}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84(84-82)(84-73)(84-13)}}{13}\normalsize = 55.7271459}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 73 и 13 равна 9.92401229
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 73 и 13 равна 8.83479143
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 73 и 13 равна 55.7271459
Ссылка на результат
?n1=82&n2=73&n3=13
Найти высоту треугольника со сторонами 150, 126 и 78
Найти высоту треугольника со сторонами 93, 86 и 77
Найти высоту треугольника со сторонами 115, 100 и 63
Найти высоту треугольника со сторонами 112, 94 и 81
Найти высоту треугольника со сторонами 76, 75 и 68
Найти высоту треугольника со сторонами 111, 106 и 68
Найти высоту треугольника со сторонами 93, 86 и 77
Найти высоту треугольника со сторонами 115, 100 и 63
Найти высоту треугольника со сторонами 112, 94 и 81
Найти высоту треугольника со сторонами 76, 75 и 68
Найти высоту треугольника со сторонами 111, 106 и 68