Рассчитать высоту треугольника со сторонами 82, 73 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 73 + 18}{2}} \normalsize = 86.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86.5(86.5-82)(86.5-73)(86.5-18)}}{73}\normalsize = 16.4374186}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86.5(86.5-82)(86.5-73)(86.5-18)}}{82}\normalsize = 14.6333117}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86.5(86.5-82)(86.5-73)(86.5-18)}}{18}\normalsize = 66.6628645}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 73 и 18 равна 16.4374186
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 73 и 18 равна 14.6333117
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 73 и 18 равна 66.6628645
Ссылка на результат
?n1=82&n2=73&n3=18
Найти высоту треугольника со сторонами 108, 82 и 41
Найти высоту треугольника со сторонами 43, 29 и 20
Найти высоту треугольника со сторонами 125, 123 и 68
Найти высоту треугольника со сторонами 128, 127 и 39
Найти высоту треугольника со сторонами 112, 106 и 15
Найти высоту треугольника со сторонами 97, 93 и 65
Найти высоту треугольника со сторонами 43, 29 и 20
Найти высоту треугольника со сторонами 125, 123 и 68
Найти высоту треугольника со сторонами 128, 127 и 39
Найти высоту треугольника со сторонами 112, 106 и 15
Найти высоту треугольника со сторонами 97, 93 и 65