Рассчитать высоту треугольника со сторонами 82, 77 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 77 + 60}{2}} \normalsize = 109.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109.5(109.5-82)(109.5-77)(109.5-60)}}{77}\normalsize = 57.168521}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109.5(109.5-82)(109.5-77)(109.5-60)}}{82}\normalsize = 53.6826356}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109.5(109.5-82)(109.5-77)(109.5-60)}}{60}\normalsize = 73.3662686}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 77 и 60 равна 57.168521
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 77 и 60 равна 53.6826356
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 77 и 60 равна 73.3662686
Ссылка на результат
?n1=82&n2=77&n3=60
Найти высоту треугольника со сторонами 80, 62 и 20
Найти высоту треугольника со сторонами 130, 88 и 57
Найти высоту треугольника со сторонами 147, 143 и 14
Найти высоту треугольника со сторонами 147, 99 и 99
Найти высоту треугольника со сторонами 118, 105 и 82
Найти высоту треугольника со сторонами 121, 121 и 110
Найти высоту треугольника со сторонами 130, 88 и 57
Найти высоту треугольника со сторонами 147, 143 и 14
Найти высоту треугольника со сторонами 147, 99 и 99
Найти высоту треугольника со сторонами 118, 105 и 82
Найти высоту треугольника со сторонами 121, 121 и 110