Рассчитать высоту треугольника со сторонами 82, 77 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 77 + 66}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-82)(112.5-77)(112.5-66)}}{77}\normalsize = 61.8167409}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-82)(112.5-77)(112.5-66)}}{82}\normalsize = 58.0474274}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-82)(112.5-77)(112.5-66)}}{66}\normalsize = 72.119531}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 77 и 66 равна 61.8167409
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 77 и 66 равна 58.0474274
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 77 и 66 равна 72.119531
Ссылка на результат
?n1=82&n2=77&n3=66
Найти высоту треугольника со сторонами 142, 127 и 65
Найти высоту треугольника со сторонами 133, 133 и 68
Найти высоту треугольника со сторонами 103, 94 и 30
Найти высоту треугольника со сторонами 82, 82 и 30
Найти высоту треугольника со сторонами 96, 61 и 46
Найти высоту треугольника со сторонами 148, 134 и 47
Найти высоту треугольника со сторонами 133, 133 и 68
Найти высоту треугольника со сторонами 103, 94 и 30
Найти высоту треугольника со сторонами 82, 82 и 30
Найти высоту треугольника со сторонами 96, 61 и 46
Найти высоту треугольника со сторонами 148, 134 и 47