Рассчитать высоту треугольника со сторонами 82, 80 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 80 + 53}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-82)(107.5-80)(107.5-53)}}{80}\normalsize = 50.6732698}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-82)(107.5-80)(107.5-53)}}{82}\normalsize = 49.4373364}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-82)(107.5-80)(107.5-53)}}{53}\normalsize = 76.4879544}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 80 и 53 равна 50.6732698
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 80 и 53 равна 49.4373364
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 80 и 53 равна 76.4879544
Ссылка на результат
?n1=82&n2=80&n3=53
Найти высоту треугольника со сторонами 123, 98 и 43
Найти высоту треугольника со сторонами 101, 75 и 46
Найти высоту треугольника со сторонами 96, 90 и 13
Найти высоту треугольника со сторонами 139, 122 и 19
Найти высоту треугольника со сторонами 122, 115 и 101
Найти высоту треугольника со сторонами 29, 21 и 14
Найти высоту треугольника со сторонами 101, 75 и 46
Найти высоту треугольника со сторонами 96, 90 и 13
Найти высоту треугольника со сторонами 139, 122 и 19
Найти высоту треугольника со сторонами 122, 115 и 101
Найти высоту треугольника со сторонами 29, 21 и 14