Рассчитать высоту треугольника со сторонами 83, 44 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 44 + 41}{2}} \normalsize = 84}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84(84-83)(84-44)(84-41)}}{44}\normalsize = 17.2775113}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84(84-83)(84-44)(84-41)}}{83}\normalsize = 9.15916262}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84(84-83)(84-44)(84-41)}}{41}\normalsize = 18.5417194}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 44 и 41 равна 17.2775113
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 44 и 41 равна 9.15916262
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 44 и 41 равна 18.5417194
Ссылка на результат
?n1=83&n2=44&n3=41
Найти высоту треугольника со сторонами 138, 119 и 65
Найти высоту треугольника со сторонами 99, 94 и 67
Найти высоту треугольника со сторонами 133, 97 и 42
Найти высоту треугольника со сторонами 57, 48 и 47
Найти высоту треугольника со сторонами 43, 31 и 17
Найти высоту треугольника со сторонами 78, 65 и 62
Найти высоту треугольника со сторонами 99, 94 и 67
Найти высоту треугольника со сторонами 133, 97 и 42
Найти высоту треугольника со сторонами 57, 48 и 47
Найти высоту треугольника со сторонами 43, 31 и 17
Найти высоту треугольника со сторонами 78, 65 и 62