Рассчитать высоту треугольника со сторонами 83, 51 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 51 + 44}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-83)(89-51)(89-44)}}{51}\normalsize = 37.4738663}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-83)(89-51)(89-44)}}{83}\normalsize = 23.0261106}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-83)(89-51)(89-44)}}{44}\normalsize = 43.4356178}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 51 и 44 равна 37.4738663
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 51 и 44 равна 23.0261106
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 51 и 44 равна 43.4356178
Ссылка на результат
?n1=83&n2=51&n3=44
Найти высоту треугольника со сторонами 142, 142 и 57
Найти высоту треугольника со сторонами 116, 92 и 66
Найти высоту треугольника со сторонами 130, 91 и 82
Найти высоту треугольника со сторонами 132, 87 и 67
Найти высоту треугольника со сторонами 109, 108 и 75
Найти высоту треугольника со сторонами 80, 76 и 20
Найти высоту треугольника со сторонами 116, 92 и 66
Найти высоту треугольника со сторонами 130, 91 и 82
Найти высоту треугольника со сторонами 132, 87 и 67
Найти высоту треугольника со сторонами 109, 108 и 75
Найти высоту треугольника со сторонами 80, 76 и 20