Рассчитать высоту треугольника со сторонами 83, 56 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 56 + 55}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-83)(97-56)(97-55)}}{56}\normalsize = 54.6145585}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-83)(97-56)(97-55)}}{83}\normalsize = 36.8483768}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-83)(97-56)(97-55)}}{55}\normalsize = 55.6075505}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 56 и 55 равна 54.6145585
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 56 и 55 равна 36.8483768
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 56 и 55 равна 55.6075505
Ссылка на результат
?n1=83&n2=56&n3=55
Найти высоту треугольника со сторонами 112, 74 и 65
Найти высоту треугольника со сторонами 20, 14 и 7
Найти высоту треугольника со сторонами 149, 87 и 82
Найти высоту треугольника со сторонами 146, 121 и 39
Найти высоту треугольника со сторонами 54, 49 и 36
Найти высоту треугольника со сторонами 105, 97 и 29
Найти высоту треугольника со сторонами 20, 14 и 7
Найти высоту треугольника со сторонами 149, 87 и 82
Найти высоту треугольника со сторонами 146, 121 и 39
Найти высоту треугольника со сторонами 54, 49 и 36
Найти высоту треугольника со сторонами 105, 97 и 29