Рассчитать высоту треугольника со сторонами 83, 58 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 58 + 55}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-83)(98-58)(98-55)}}{58}\normalsize = 54.8308392}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-83)(98-58)(98-55)}}{83}\normalsize = 38.3155262}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-83)(98-58)(98-55)}}{55}\normalsize = 57.8216122}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 58 и 55 равна 54.8308392
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 58 и 55 равна 38.3155262
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 58 и 55 равна 57.8216122
Ссылка на результат
?n1=83&n2=58&n3=55
Найти высоту треугольника со сторонами 48, 35 и 24
Найти высоту треугольника со сторонами 54, 53 и 21
Найти высоту треугольника со сторонами 103, 78 и 57
Найти высоту треугольника со сторонами 133, 131 и 126
Найти высоту треугольника со сторонами 139, 109 и 65
Найти высоту треугольника со сторонами 55, 54 и 11
Найти высоту треугольника со сторонами 54, 53 и 21
Найти высоту треугольника со сторонами 103, 78 и 57
Найти высоту треугольника со сторонами 133, 131 и 126
Найти высоту треугольника со сторонами 139, 109 и 65
Найти высоту треугольника со сторонами 55, 54 и 11