Рассчитать высоту треугольника со сторонами 83, 60 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 60 + 54}{2}} \normalsize = 98.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98.5(98.5-83)(98.5-60)(98.5-54)}}{60}\normalsize = 53.9104653}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98.5(98.5-83)(98.5-60)(98.5-54)}}{83}\normalsize = 38.9714207}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98.5(98.5-83)(98.5-60)(98.5-54)}}{54}\normalsize = 59.9005169}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 60 и 54 равна 53.9104653
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 60 и 54 равна 38.9714207
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 60 и 54 равна 59.9005169
Ссылка на результат
?n1=83&n2=60&n3=54
Найти высоту треугольника со сторонами 140, 82 и 74
Найти высоту треугольника со сторонами 104, 92 и 77
Найти высоту треугольника со сторонами 124, 79 и 56
Найти высоту треугольника со сторонами 120, 107 и 23
Найти высоту треугольника со сторонами 144, 140 и 45
Найти высоту треугольника со сторонами 112, 109 и 19
Найти высоту треугольника со сторонами 104, 92 и 77
Найти высоту треугольника со сторонами 124, 79 и 56
Найти высоту треугольника со сторонами 120, 107 и 23
Найти высоту треугольника со сторонами 144, 140 и 45
Найти высоту треугольника со сторонами 112, 109 и 19