Рассчитать высоту треугольника со сторонами 83, 66 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 66 + 25}{2}} \normalsize = 87}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87(87-83)(87-66)(87-25)}}{66}\normalsize = 20.3976988}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87(87-83)(87-66)(87-25)}}{83}\normalsize = 16.2198569}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87(87-83)(87-66)(87-25)}}{25}\normalsize = 53.8499248}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 66 и 25 равна 20.3976988
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 66 и 25 равна 16.2198569
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 66 и 25 равна 53.8499248
Ссылка на результат
?n1=83&n2=66&n3=25
Найти высоту треугольника со сторонами 147, 147 и 35
Найти высоту треугольника со сторонами 150, 143 и 38
Найти высоту треугольника со сторонами 91, 75 и 68
Найти высоту треугольника со сторонами 50, 38 и 31
Найти высоту треугольника со сторонами 136, 102 и 95
Найти высоту треугольника со сторонами 135, 122 и 116
Найти высоту треугольника со сторонами 150, 143 и 38
Найти высоту треугольника со сторонами 91, 75 и 68
Найти высоту треугольника со сторонами 50, 38 и 31
Найти высоту треугольника со сторонами 136, 102 и 95
Найти высоту треугольника со сторонами 135, 122 и 116