Рассчитать высоту треугольника со сторонами 83, 67 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 67 + 18}{2}} \normalsize = 84}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84(84-83)(84-67)(84-18)}}{67}\normalsize = 9.16413049}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84(84-83)(84-67)(84-18)}}{83}\normalsize = 7.39755112}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84(84-83)(84-67)(84-18)}}{18}\normalsize = 34.1109301}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 67 и 18 равна 9.16413049
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 67 и 18 равна 7.39755112
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 67 и 18 равна 34.1109301
Ссылка на результат
?n1=83&n2=67&n3=18
Найти высоту треугольника со сторонами 87, 84 и 45
Найти высоту треугольника со сторонами 98, 71 и 35
Найти высоту треугольника со сторонами 149, 147 и 16
Найти высоту треугольника со сторонами 115, 95 и 49
Найти высоту треугольника со сторонами 127, 127 и 20
Найти высоту треугольника со сторонами 65, 60 и 18
Найти высоту треугольника со сторонами 98, 71 и 35
Найти высоту треугольника со сторонами 149, 147 и 16
Найти высоту треугольника со сторонами 115, 95 и 49
Найти высоту треугольника со сторонами 127, 127 и 20
Найти высоту треугольника со сторонами 65, 60 и 18