Рассчитать высоту треугольника со сторонами 83, 72 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 72 + 19}{2}} \normalsize = 87}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87(87-83)(87-72)(87-19)}}{72}\normalsize = 16.5495888}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87(87-83)(87-72)(87-19)}}{83}\normalsize = 14.3562698}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87(87-83)(87-72)(87-19)}}{19}\normalsize = 62.7142312}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 72 и 19 равна 16.5495888
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 72 и 19 равна 14.3562698
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 72 и 19 равна 62.7142312
Ссылка на результат
?n1=83&n2=72&n3=19
Найти высоту треугольника со сторонами 133, 128 и 39
Найти высоту треугольника со сторонами 124, 76 и 49
Найти высоту треугольника со сторонами 126, 101 и 84
Найти высоту треугольника со сторонами 83, 78 и 7
Найти высоту треугольника со сторонами 145, 102 и 51
Найти высоту треугольника со сторонами 118, 103 и 33
Найти высоту треугольника со сторонами 124, 76 и 49
Найти высоту треугольника со сторонами 126, 101 и 84
Найти высоту треугольника со сторонами 83, 78 и 7
Найти высоту треугольника со сторонами 145, 102 и 51
Найти высоту треугольника со сторонами 118, 103 и 33