Рассчитать высоту треугольника со сторонами 83, 72 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 72 + 26}{2}} \normalsize = 90.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{90.5(90.5-83)(90.5-72)(90.5-26)}}{72}\normalsize = 24.9987413}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{90.5(90.5-83)(90.5-72)(90.5-26)}}{83}\normalsize = 21.6856551}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{90.5(90.5-83)(90.5-72)(90.5-26)}}{26}\normalsize = 69.2272836}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 72 и 26 равна 24.9987413
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 72 и 26 равна 21.6856551
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 72 и 26 равна 69.2272836
Ссылка на результат
?n1=83&n2=72&n3=26
Найти высоту треугольника со сторонами 145, 132 и 125
Найти высоту треугольника со сторонами 112, 107 и 58
Найти высоту треугольника со сторонами 146, 145 и 130
Найти высоту треугольника со сторонами 142, 129 и 27
Найти высоту треугольника со сторонами 139, 132 и 110
Найти высоту треугольника со сторонами 135, 126 и 10
Найти высоту треугольника со сторонами 112, 107 и 58
Найти высоту треугольника со сторонами 146, 145 и 130
Найти высоту треугольника со сторонами 142, 129 и 27
Найти высоту треугольника со сторонами 139, 132 и 110
Найти высоту треугольника со сторонами 135, 126 и 10