Рассчитать высоту треугольника со сторонами 83, 73 и 11

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 73 + 11}{2}} \normalsize = 83.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83.5(83.5-83)(83.5-73)(83.5-11)}}{73}\normalsize = 4.88426286}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83.5(83.5-83)(83.5-73)(83.5-11)}}{83}\normalsize = 4.29579745}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83.5(83.5-83)(83.5-73)(83.5-11)}}{11}\normalsize = 32.4137444}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 73 и 11 равна 4.88426286
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 73 и 11 равна 4.29579745
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 73 и 11 равна 32.4137444
Ссылка на результат
?n1=83&n2=73&n3=11