Рассчитать высоту треугольника со сторонами 83, 73 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 73 + 40}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-83)(98-73)(98-40)}}{73}\normalsize = 39.9990617}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-83)(98-73)(98-40)}}{83}\normalsize = 35.1798977}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-83)(98-73)(98-40)}}{40}\normalsize = 72.9982877}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 73 и 40 равна 39.9990617
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 73 и 40 равна 35.1798977
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 73 и 40 равна 72.9982877
Ссылка на результат
?n1=83&n2=73&n3=40
Найти высоту треугольника со сторонами 76, 59 и 49
Найти высоту треугольника со сторонами 148, 139 и 81
Найти высоту треугольника со сторонами 51, 51 и 38
Найти высоту треугольника со сторонами 109, 97 и 50
Найти высоту треугольника со сторонами 95, 77 и 53
Найти высоту треугольника со сторонами 112, 74 и 57
Найти высоту треугольника со сторонами 148, 139 и 81
Найти высоту треугольника со сторонами 51, 51 и 38
Найти высоту треугольника со сторонами 109, 97 и 50
Найти высоту треугольника со сторонами 95, 77 и 53
Найти высоту треугольника со сторонами 112, 74 и 57