Рассчитать высоту треугольника со сторонами 83, 74 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 74 + 50}{2}} \normalsize = 103.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103.5(103.5-83)(103.5-74)(103.5-50)}}{74}\normalsize = 49.4576276}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103.5(103.5-83)(103.5-74)(103.5-50)}}{83}\normalsize = 44.0947523}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103.5(103.5-83)(103.5-74)(103.5-50)}}{50}\normalsize = 73.1972889}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 74 и 50 равна 49.4576276
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 74 и 50 равна 44.0947523
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 74 и 50 равна 73.1972889
Ссылка на результат
?n1=83&n2=74&n3=50
Найти высоту треугольника со сторонами 137, 91 и 83
Найти высоту треугольника со сторонами 40, 40 и 17
Найти высоту треугольника со сторонами 102, 100 и 32
Найти высоту треугольника со сторонами 102, 69 и 61
Найти высоту треугольника со сторонами 144, 144 и 72
Найти высоту треугольника со сторонами 86, 71 и 37
Найти высоту треугольника со сторонами 40, 40 и 17
Найти высоту треугольника со сторонами 102, 100 и 32
Найти высоту треугольника со сторонами 102, 69 и 61
Найти высоту треугольника со сторонами 144, 144 и 72
Найти высоту треугольника со сторонами 86, 71 и 37