Рассчитать высоту треугольника со сторонами 83, 75 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 75 + 36}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-83)(97-75)(97-36)}}{75}\normalsize = 35.9993679}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-83)(97-75)(97-36)}}{83}\normalsize = 32.5295493}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-83)(97-75)(97-36)}}{36}\normalsize = 74.9986831}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 75 и 36 равна 35.9993679
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 75 и 36 равна 32.5295493
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 75 и 36 равна 74.9986831
Ссылка на результат
?n1=83&n2=75&n3=36
Найти высоту треугольника со сторонами 94, 62 и 55
Найти высоту треугольника со сторонами 120, 117 и 91
Найти высоту треугольника со сторонами 113, 74 и 63
Найти высоту треугольника со сторонами 125, 117 и 45
Найти высоту треугольника со сторонами 98, 64 и 52
Найти высоту треугольника со сторонами 142, 124 и 120
Найти высоту треугольника со сторонами 120, 117 и 91
Найти высоту треугольника со сторонами 113, 74 и 63
Найти высоту треугольника со сторонами 125, 117 и 45
Найти высоту треугольника со сторонами 98, 64 и 52
Найти высоту треугольника со сторонами 142, 124 и 120