Рассчитать высоту треугольника со сторонами 83, 75 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 75 + 43}{2}} \normalsize = 100.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100.5(100.5-83)(100.5-75)(100.5-43)}}{75}\normalsize = 42.8227743}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100.5(100.5-83)(100.5-75)(100.5-43)}}{83}\normalsize = 38.695278}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100.5(100.5-83)(100.5-75)(100.5-43)}}{43}\normalsize = 74.6908854}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 75 и 43 равна 42.8227743
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 75 и 43 равна 38.695278
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 75 и 43 равна 74.6908854
Ссылка на результат
?n1=83&n2=75&n3=43
Найти высоту треугольника со сторонами 150, 103 и 100
Найти высоту треугольника со сторонами 131, 74 и 67
Найти высоту треугольника со сторонами 129, 123 и 11
Найти высоту треугольника со сторонами 149, 139 и 113
Найти высоту треугольника со сторонами 146, 136 и 94
Найти высоту треугольника со сторонами 116, 104 и 71
Найти высоту треугольника со сторонами 131, 74 и 67
Найти высоту треугольника со сторонами 129, 123 и 11
Найти высоту треугольника со сторонами 149, 139 и 113
Найти высоту треугольника со сторонами 146, 136 и 94
Найти высоту треугольника со сторонами 116, 104 и 71