Рассчитать высоту треугольника со сторонами 83, 75 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 75 + 56}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-83)(107-75)(107-56)}}{75}\normalsize = 54.5916624}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-83)(107-75)(107-56)}}{83}\normalsize = 49.3298154}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-83)(107-75)(107-56)}}{56}\normalsize = 73.1138335}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 75 и 56 равна 54.5916624
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 75 и 56 равна 49.3298154
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 75 и 56 равна 73.1138335
Ссылка на результат
?n1=83&n2=75&n3=56
Найти высоту треугольника со сторонами 106, 95 и 37
Найти высоту треугольника со сторонами 105, 84 и 22
Найти высоту треугольника со сторонами 72, 57 и 34
Найти высоту треугольника со сторонами 128, 113 и 87
Найти высоту треугольника со сторонами 112, 91 и 27
Найти высоту треугольника со сторонами 150, 120 и 102
Найти высоту треугольника со сторонами 105, 84 и 22
Найти высоту треугольника со сторонами 72, 57 и 34
Найти высоту треугольника со сторонами 128, 113 и 87
Найти высоту треугольника со сторонами 112, 91 и 27
Найти высоту треугольника со сторонами 150, 120 и 102