Рассчитать высоту треугольника со сторонами 83, 78 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 78 + 53}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-83)(107-78)(107-53)}}{78}\normalsize = 51.4196104}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-83)(107-78)(107-53)}}{83}\normalsize = 48.3220435}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-83)(107-78)(107-53)}}{53}\normalsize = 75.6741436}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 78 и 53 равна 51.4196104
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 78 и 53 равна 48.3220435
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 78 и 53 равна 75.6741436
Ссылка на результат
?n1=83&n2=78&n3=53
Найти высоту треугольника со сторонами 118, 102 и 52
Найти высоту треугольника со сторонами 134, 110 и 39
Найти высоту треугольника со сторонами 85, 68 и 44
Найти высоту треугольника со сторонами 126, 116 и 11
Найти высоту треугольника со сторонами 116, 111 и 46
Найти высоту треугольника со сторонами 75, 69 и 19
Найти высоту треугольника со сторонами 134, 110 и 39
Найти высоту треугольника со сторонами 85, 68 и 44
Найти высоту треугольника со сторонами 126, 116 и 11
Найти высоту треугольника со сторонами 116, 111 и 46
Найти высоту треугольника со сторонами 75, 69 и 19