Рассчитать высоту треугольника со сторонами 83, 78 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 78 + 74}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-83)(117.5-78)(117.5-74)}}{78}\normalsize = 67.6716943}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-83)(117.5-78)(117.5-74)}}{83}\normalsize = 63.5950862}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-83)(117.5-78)(117.5-74)}}{74}\normalsize = 71.3296237}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 78 и 74 равна 67.6716943
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 78 и 74 равна 63.5950862
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 78 и 74 равна 71.3296237
Ссылка на результат
?n1=83&n2=78&n3=74
Найти высоту треугольника со сторонами 138, 117 и 89
Найти высоту треугольника со сторонами 133, 120 и 57
Найти высоту треугольника со сторонами 86, 85 и 30
Найти высоту треугольника со сторонами 106, 98 и 45
Найти высоту треугольника со сторонами 111, 108 и 73
Найти высоту треугольника со сторонами 146, 144 и 90
Найти высоту треугольника со сторонами 133, 120 и 57
Найти высоту треугольника со сторонами 86, 85 и 30
Найти высоту треугольника со сторонами 106, 98 и 45
Найти высоту треугольника со сторонами 111, 108 и 73
Найти высоту треугольника со сторонами 146, 144 и 90