Рассчитать высоту треугольника со сторонами 83, 81 и 4
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 81 + 4}{2}} \normalsize = 84}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84(84-83)(84-81)(84-4)}}{81}\normalsize = 3.50582506}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84(84-83)(84-81)(84-4)}}{83}\normalsize = 3.42134734}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84(84-83)(84-81)(84-4)}}{4}\normalsize = 70.9929574}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 81 и 4 равна 3.50582506
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 81 и 4 равна 3.42134734
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 81 и 4 равна 70.9929574
Ссылка на результат
?n1=83&n2=81&n3=4
Найти высоту треугольника со сторонами 124, 87 и 75
Найти высоту треугольника со сторонами 103, 96 и 18
Найти высоту треугольника со сторонами 143, 107 и 103
Найти высоту треугольника со сторонами 140, 140 и 138
Найти высоту треугольника со сторонами 95, 93 и 67
Найти высоту треугольника со сторонами 125, 107 и 21
Найти высоту треугольника со сторонами 103, 96 и 18
Найти высоту треугольника со сторонами 143, 107 и 103
Найти высоту треугольника со сторонами 140, 140 и 138
Найти высоту треугольника со сторонами 95, 93 и 67
Найти высоту треугольника со сторонами 125, 107 и 21