Рассчитать высоту треугольника со сторонами 84, 50 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 50 + 38}{2}} \normalsize = 86}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86(86-84)(86-50)(86-38)}}{50}\normalsize = 21.807008}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86(86-84)(86-50)(86-38)}}{84}\normalsize = 12.9803619}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86(86-84)(86-50)(86-38)}}{38}\normalsize = 28.6934316}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 50 и 38 равна 21.807008
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 50 и 38 равна 12.9803619
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 50 и 38 равна 28.6934316
Ссылка на результат
?n1=84&n2=50&n3=38
Найти высоту треугольника со сторонами 99, 91 и 61
Найти высоту треугольника со сторонами 134, 114 и 62
Найти высоту треугольника со сторонами 72, 61 и 45
Найти высоту треугольника со сторонами 147, 128 и 65
Найти высоту треугольника со сторонами 137, 130 и 128
Найти высоту треугольника со сторонами 72, 64 и 11
Найти высоту треугольника со сторонами 134, 114 и 62
Найти высоту треугольника со сторонами 72, 61 и 45
Найти высоту треугольника со сторонами 147, 128 и 65
Найти высоту треугольника со сторонами 137, 130 и 128
Найти высоту треугольника со сторонами 72, 64 и 11