Рассчитать высоту треугольника со сторонами 84, 54 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 54 + 31}{2}} \normalsize = 84.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84.5(84.5-84)(84.5-54)(84.5-31)}}{54}\normalsize = 9.72470427}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84.5(84.5-84)(84.5-54)(84.5-31)}}{84}\normalsize = 6.2515956}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84.5(84.5-84)(84.5-54)(84.5-31)}}{31}\normalsize = 16.9398074}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 54 и 31 равна 9.72470427
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 54 и 31 равна 6.2515956
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 54 и 31 равна 16.9398074
Ссылка на результат
?n1=84&n2=54&n3=31
Найти высоту треугольника со сторонами 119, 107 и 18
Найти высоту треугольника со сторонами 89, 82 и 13
Найти высоту треугольника со сторонами 125, 112 и 25
Найти высоту треугольника со сторонами 125, 113 и 47
Найти высоту треугольника со сторонами 123, 73 и 52
Найти высоту треугольника со сторонами 82, 79 и 60
Найти высоту треугольника со сторонами 89, 82 и 13
Найти высоту треугольника со сторонами 125, 112 и 25
Найти высоту треугольника со сторонами 125, 113 и 47
Найти высоту треугольника со сторонами 123, 73 и 52
Найти высоту треугольника со сторонами 82, 79 и 60