Рассчитать высоту треугольника со сторонами 84, 55 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 55 + 44}{2}} \normalsize = 91.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91.5(91.5-84)(91.5-55)(91.5-44)}}{55}\normalsize = 39.6644761}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91.5(91.5-84)(91.5-55)(91.5-44)}}{84}\normalsize = 25.9707879}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91.5(91.5-84)(91.5-55)(91.5-44)}}{44}\normalsize = 49.5805951}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 55 и 44 равна 39.6644761
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 55 и 44 равна 25.9707879
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 55 и 44 равна 49.5805951
Ссылка на результат
?n1=84&n2=55&n3=44
Найти высоту треугольника со сторонами 147, 113 и 91
Найти высоту треугольника со сторонами 57, 46 и 19
Найти высоту треугольника со сторонами 53, 52 и 44
Найти высоту треугольника со сторонами 124, 91 и 61
Найти высоту треугольника со сторонами 147, 139 и 74
Найти высоту треугольника со сторонами 106, 63 и 63
Найти высоту треугольника со сторонами 57, 46 и 19
Найти высоту треугольника со сторонами 53, 52 и 44
Найти высоту треугольника со сторонами 124, 91 и 61
Найти высоту треугольника со сторонами 147, 139 и 74
Найти высоту треугольника со сторонами 106, 63 и 63