Рассчитать высоту треугольника со сторонами 84, 56 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 56 + 50}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-84)(95-56)(95-50)}}{56}\normalsize = 48.3658333}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-84)(95-56)(95-50)}}{84}\normalsize = 32.2438888}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-84)(95-56)(95-50)}}{50}\normalsize = 54.1697332}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 56 и 50 равна 48.3658333
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 56 и 50 равна 32.2438888
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 56 и 50 равна 54.1697332
Ссылка на результат
?n1=84&n2=56&n3=50
Найти высоту треугольника со сторонами 94, 55 и 51
Найти высоту треугольника со сторонами 110, 79 и 42
Найти высоту треугольника со сторонами 112, 86 и 51
Найти высоту треугольника со сторонами 133, 70 и 67
Найти высоту треугольника со сторонами 124, 110 и 108
Найти высоту треугольника со сторонами 140, 140 и 101
Найти высоту треугольника со сторонами 110, 79 и 42
Найти высоту треугольника со сторонами 112, 86 и 51
Найти высоту треугольника со сторонами 133, 70 и 67
Найти высоту треугольника со сторонами 124, 110 и 108
Найти высоту треугольника со сторонами 140, 140 и 101