Рассчитать высоту треугольника со сторонами 84, 59 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 59 + 46}{2}} \normalsize = 94.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94.5(94.5-84)(94.5-59)(94.5-46)}}{59}\normalsize = 44.3071263}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94.5(94.5-84)(94.5-59)(94.5-46)}}{84}\normalsize = 31.1204816}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94.5(94.5-84)(94.5-59)(94.5-46)}}{46}\normalsize = 56.8287055}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 59 и 46 равна 44.3071263
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 59 и 46 равна 31.1204816
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 59 и 46 равна 56.8287055
Ссылка на результат
?n1=84&n2=59&n3=46
Найти высоту треугольника со сторонами 92, 70 и 55
Найти высоту треугольника со сторонами 123, 122 и 14
Найти высоту треугольника со сторонами 91, 54 и 45
Найти высоту треугольника со сторонами 132, 116 и 90
Найти высоту треугольника со сторонами 141, 126 и 32
Найти высоту треугольника со сторонами 150, 113 и 45
Найти высоту треугольника со сторонами 123, 122 и 14
Найти высоту треугольника со сторонами 91, 54 и 45
Найти высоту треугольника со сторонами 132, 116 и 90
Найти высоту треугольника со сторонами 141, 126 и 32
Найти высоту треугольника со сторонами 150, 113 и 45