Рассчитать высоту треугольника со сторонами 84, 59 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 59 + 57}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-84)(100-59)(100-57)}}{59}\normalsize = 56.9330082}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-84)(100-59)(100-57)}}{84}\normalsize = 39.9886605}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-84)(100-59)(100-57)}}{57}\normalsize = 58.9306576}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 59 и 57 равна 56.9330082
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 59 и 57 равна 39.9886605
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 59 и 57 равна 58.9306576
Ссылка на результат
?n1=84&n2=59&n3=57
Найти высоту треугольника со сторонами 130, 96 и 70
Найти высоту треугольника со сторонами 133, 81 и 59
Найти высоту треугольника со сторонами 109, 101 и 16
Найти высоту треугольника со сторонами 123, 119 и 100
Найти высоту треугольника со сторонами 68, 46 и 46
Найти высоту треугольника со сторонами 149, 100 и 64
Найти высоту треугольника со сторонами 133, 81 и 59
Найти высоту треугольника со сторонами 109, 101 и 16
Найти высоту треугольника со сторонами 123, 119 и 100
Найти высоту треугольника со сторонами 68, 46 и 46
Найти высоту треугольника со сторонами 149, 100 и 64