Рассчитать высоту треугольника со сторонами 84, 62 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 62 + 39}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-84)(92.5-62)(92.5-39)}}{62}\normalsize = 36.5380568}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-84)(92.5-62)(92.5-39)}}{84}\normalsize = 26.9685657}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-84)(92.5-62)(92.5-39)}}{39}\normalsize = 58.0861415}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 62 и 39 равна 36.5380568
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 62 и 39 равна 26.9685657
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 62 и 39 равна 58.0861415
Ссылка на результат
?n1=84&n2=62&n3=39
Найти высоту треугольника со сторонами 122, 99 и 80
Найти высоту треугольника со сторонами 100, 69 и 37
Найти высоту треугольника со сторонами 134, 100 и 48
Найти высоту треугольника со сторонами 148, 136 и 103
Найти высоту треугольника со сторонами 132, 101 и 32
Найти высоту треугольника со сторонами 128, 102 и 27
Найти высоту треугольника со сторонами 100, 69 и 37
Найти высоту треугольника со сторонами 134, 100 и 48
Найти высоту треугольника со сторонами 148, 136 и 103
Найти высоту треугольника со сторонами 132, 101 и 32
Найти высоту треугольника со сторонами 128, 102 и 27