Рассчитать высоту треугольника со сторонами 84, 65 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 65 + 37}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-84)(93-65)(93-37)}}{65}\normalsize = 35.2494542}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-84)(93-65)(93-37)}}{84}\normalsize = 27.2763634}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-84)(93-65)(93-37)}}{37}\normalsize = 61.9247169}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 65 и 37 равна 35.2494542
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 65 и 37 равна 27.2763634
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 65 и 37 равна 61.9247169
Ссылка на результат
?n1=84&n2=65&n3=37
Найти высоту треугольника со сторонами 93, 74 и 26
Найти высоту треугольника со сторонами 116, 112 и 80
Найти высоту треугольника со сторонами 133, 132 и 41
Найти высоту треугольника со сторонами 129, 116 и 29
Найти высоту треугольника со сторонами 119, 83 и 52
Найти высоту треугольника со сторонами 103, 90 и 60
Найти высоту треугольника со сторонами 116, 112 и 80
Найти высоту треугольника со сторонами 133, 132 и 41
Найти высоту треугольника со сторонами 129, 116 и 29
Найти высоту треугольника со сторонами 119, 83 и 52
Найти высоту треугольника со сторонами 103, 90 и 60