Рассчитать высоту треугольника со сторонами 84, 66 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 66 + 65}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-84)(107.5-66)(107.5-65)}}{66}\normalsize = 63.965049}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-84)(107.5-66)(107.5-65)}}{84}\normalsize = 50.2582528}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-84)(107.5-66)(107.5-65)}}{65}\normalsize = 64.9491267}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 66 и 65 равна 63.965049
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 66 и 65 равна 50.2582528
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 66 и 65 равна 64.9491267
Ссылка на результат
?n1=84&n2=66&n3=65
Найти высоту треугольника со сторонами 77, 76 и 57
Найти высоту треугольника со сторонами 147, 94 и 60
Найти высоту треугольника со сторонами 137, 126 и 87
Найти высоту треугольника со сторонами 140, 123 и 50
Найти высоту треугольника со сторонами 111, 98 и 66
Найти высоту треугольника со сторонами 46, 45 и 9
Найти высоту треугольника со сторонами 147, 94 и 60
Найти высоту треугольника со сторонами 137, 126 и 87
Найти высоту треугольника со сторонами 140, 123 и 50
Найти высоту треугольника со сторонами 111, 98 и 66
Найти высоту треугольника со сторонами 46, 45 и 9