Рассчитать высоту треугольника со сторонами 84, 71 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 71 + 22}{2}} \normalsize = 88.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88.5(88.5-84)(88.5-71)(88.5-22)}}{71}\normalsize = 19.1769434}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88.5(88.5-84)(88.5-71)(88.5-22)}}{84}\normalsize = 16.2090831}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88.5(88.5-84)(88.5-71)(88.5-22)}}{22}\normalsize = 61.8892264}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 71 и 22 равна 19.1769434
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 71 и 22 равна 16.2090831
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 71 и 22 равна 61.8892264
Ссылка на результат
?n1=84&n2=71&n3=22
Найти высоту треугольника со сторонами 121, 101 и 63
Найти высоту треугольника со сторонами 116, 110 и 36
Найти высоту треугольника со сторонами 149, 108 и 63
Найти высоту треугольника со сторонами 77, 65 и 50
Найти высоту треугольника со сторонами 142, 126 и 44
Найти высоту треугольника со сторонами 121, 113 и 63
Найти высоту треугольника со сторонами 116, 110 и 36
Найти высоту треугольника со сторонами 149, 108 и 63
Найти высоту треугольника со сторонами 77, 65 и 50
Найти высоту треугольника со сторонами 142, 126 и 44
Найти высоту треугольника со сторонами 121, 113 и 63