Рассчитать высоту треугольника со сторонами 84, 72 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 72 + 26}{2}} \normalsize = 91}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91(91-84)(91-72)(91-26)}}{72}\normalsize = 24.6377301}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91(91-84)(91-72)(91-26)}}{84}\normalsize = 21.1180544}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91(91-84)(91-72)(91-26)}}{26}\normalsize = 68.2275604}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 72 и 26 равна 24.6377301
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 72 и 26 равна 21.1180544
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 72 и 26 равна 68.2275604
Ссылка на результат
?n1=84&n2=72&n3=26
Найти высоту треугольника со сторонами 74, 69 и 12
Найти высоту треугольника со сторонами 82, 59 и 55
Найти высоту треугольника со сторонами 122, 104 и 64
Найти высоту треугольника со сторонами 141, 128 и 125
Найти высоту треугольника со сторонами 139, 112 и 74
Найти высоту треугольника со сторонами 131, 120 и 90
Найти высоту треугольника со сторонами 82, 59 и 55
Найти высоту треугольника со сторонами 122, 104 и 64
Найти высоту треугольника со сторонами 141, 128 и 125
Найти высоту треугольника со сторонами 139, 112 и 74
Найти высоту треугольника со сторонами 131, 120 и 90