Рассчитать высоту треугольника со сторонами 84, 72 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 72 + 51}{2}} \normalsize = 103.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103.5(103.5-84)(103.5-72)(103.5-51)}}{72}\normalsize = 50.7481142}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103.5(103.5-84)(103.5-72)(103.5-51)}}{84}\normalsize = 43.4983836}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103.5(103.5-84)(103.5-72)(103.5-51)}}{51}\normalsize = 71.6443965}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 72 и 51 равна 50.7481142
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 72 и 51 равна 43.4983836
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 72 и 51 равна 71.6443965
Ссылка на результат
?n1=84&n2=72&n3=51
Найти высоту треугольника со сторонами 57, 53 и 40
Найти высоту треугольника со сторонами 109, 91 и 45
Найти высоту треугольника со сторонами 135, 99 и 54
Найти высоту треугольника со сторонами 84, 63 и 47
Найти высоту треугольника со сторонами 63, 43 и 41
Найти высоту треугольника со сторонами 121, 108 и 55
Найти высоту треугольника со сторонами 109, 91 и 45
Найти высоту треугольника со сторонами 135, 99 и 54
Найти высоту треугольника со сторонами 84, 63 и 47
Найти высоту треугольника со сторонами 63, 43 и 41
Найти высоту треугольника со сторонами 121, 108 и 55