Рассчитать высоту треугольника со сторонами 84, 73 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 73 + 12}{2}} \normalsize = 84.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84.5(84.5-84)(84.5-73)(84.5-12)}}{73}\normalsize = 5.14207511}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84.5(84.5-84)(84.5-73)(84.5-12)}}{84}\normalsize = 4.46870813}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84.5(84.5-84)(84.5-73)(84.5-12)}}{12}\normalsize = 31.2809569}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 73 и 12 равна 5.14207511
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 73 и 12 равна 4.46870813
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 73 и 12 равна 31.2809569
Ссылка на результат
?n1=84&n2=73&n3=12
Найти высоту треугольника со сторонами 94, 89 и 88
Найти высоту треугольника со сторонами 150, 138 и 121
Найти высоту треугольника со сторонами 148, 103 и 70
Найти высоту треугольника со сторонами 61, 59 и 21
Найти высоту треугольника со сторонами 146, 111 и 88
Найти высоту треугольника со сторонами 119, 117 и 42
Найти высоту треугольника со сторонами 150, 138 и 121
Найти высоту треугольника со сторонами 148, 103 и 70
Найти высоту треугольника со сторонами 61, 59 и 21
Найти высоту треугольника со сторонами 146, 111 и 88
Найти высоту треугольника со сторонами 119, 117 и 42