Рассчитать высоту треугольника со сторонами 84, 74 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 74 + 29}{2}} \normalsize = 93.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93.5(93.5-84)(93.5-74)(93.5-29)}}{74}\normalsize = 28.5668956}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93.5(93.5-84)(93.5-74)(93.5-29)}}{84}\normalsize = 25.1660747}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93.5(93.5-84)(93.5-74)(93.5-29)}}{29}\normalsize = 72.8948369}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 74 и 29 равна 28.5668956
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 74 и 29 равна 25.1660747
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 74 и 29 равна 72.8948369
Ссылка на результат
?n1=84&n2=74&n3=29
Найти высоту треугольника со сторонами 137, 123 и 51
Найти высоту треугольника со сторонами 101, 89 и 76
Найти высоту треугольника со сторонами 145, 137 и 20
Найти высоту треугольника со сторонами 100, 91 и 24
Найти высоту треугольника со сторонами 74, 72 и 49
Найти высоту треугольника со сторонами 141, 81 и 70
Найти высоту треугольника со сторонами 101, 89 и 76
Найти высоту треугольника со сторонами 145, 137 и 20
Найти высоту треугольника со сторонами 100, 91 и 24
Найти высоту треугольника со сторонами 74, 72 и 49
Найти высоту треугольника со сторонами 141, 81 и 70